

	Heat pump ERP	Test Report
Report Number4	394367.45	
Tested by (name + signature):	Elvis Chen	***************************************
Approved by (name + signature).:	Jacky Zhang	3744463591773377411359768414364468
Date of issue		
Total number of pages	Pages	
	_	tification (Shanghai) Ltd., Guangzhou branch
	China	ad, Huangpu District, Guangzhou, Guangdong,
Applicant's name		
Address:	1F,Building C Haihe Indu Street,Huadou District,G	ustrial Zone,No.10 Dongsheng Road Xinya uangzhou City,Guangdong Province ,China
Test specification:		
Standard	EN 14825:2018, EN 145	11-1/2/3/4:2018
Test procedure	(EU) No 811/2013, (EU)	No 813/2013, EU 2017/254, EU 2016/2282
Non-standard test method	N/A	
Test Report Form No	EN 14825 heat pump air	to water
Test Report Form(s) Originator:	DEKRA Guangzhou	
Test item description	Heat pump	
Trade Mark	Mango *	
Manufacturer:	Same as applicant	
Factory:	Same as applicant	
Model/Type reference	MGSDC-030IIC	
Ratings	: 220 V 1N~, 50 Hz, R32/1	200g, see rating label

Page 2 of 19 Report No.: 4394367.45

Summary of testing:

Tests performed (Test items):

Heating capacity

Testing location:

Foshan QiCe Testing Technical Service Co., Ltd.

1/F, of No.2 Jusheng Road, Ronggui Hongxing Residential Committee, Shunde, Foshan, Guangdong, China

Page 3 of 19 Report No.: 4394367. 45

Copy of marking plate:

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.

Rating label

Page 5 of 19 Report No.: 4394367.45

Test item particulars	
Classification of installation and use:	Fixed appliance
Supply Connection:	Non-detachable power supply cord with plug

General remarks:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

Throughout this report, a dot is used as the decimal separator.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result.

The test results presented in this report relate only to the object tested.

The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

This report is not used for social proof function in China market.

General product information:	
Model number of Unit Under Test	MGSDC-030IIC
Power Supply	single-phase
Refrigerant	R32
Heat Source (Heating Mode)	air
Heat Sink	Water
Does this heat pump have a variable output	Yes
compressor?	
Type of compressor	inverter

[&]quot;(see appended table)" refers to a table appended to the report.

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
1	REQUIREMENTS FOR SEASONAL SPACE HEATING ENERGY EFFICIENCY		2
(a)	From 26 September 2015 the seasonal space heating energy efficiency and useful efficiencies of heaters shall not fall below the following values:		-
	Fuel boiler space heaters with rated heat output ≤ 70 kW and fuel boiler combination heaters with rated heat output ≤ 70 kW, with the exception of type B1 boilers with rated heat output ≤ 10 kW and type B1 combination boilers with rated heat output ≤ 30 kW: The seasonal space heating energy efficiency shall not fall below 86 %.		N/A
	Type B1 boilers with rated heat output ≤ 10 kW and type B1 combination boilers with rated heat output ≤ 30 kW: The seasonal space heating energy efficiency shall not fall below 75 %.		N/A
	Fuel boiler space heaters with rated heat output > 70 kW and ≤ 400 kW and fuel boiler combination heaters with rated heat output > 70 kW and ≤ 400 kW: The useful efficiency at 100 % of the rated heat output shall not fall below 86 %, and the useful efficiency at 30 % of the rated heat output shall not fall below 94 %.		N/A
	Electric boiler space heaters and electric boiler combination heaters: The seasonal space heating energy efficiency shall not fall below 30 %.		N/A
	Cogeneration space heaters: The seasonal space heating energy efficiency shall not fall below 86 %.		N/A
	Heat pump space heaters and heat pump combination heaters, with the exception of low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 100 %.		Р
	Low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 115 %.		N/A
(b)	From 26 September 2017 the seasonal space heating energy efficiency of electric boiler space heaters, electric boiler combination heaters, cogeneration space heaters, heat pump space heaters and heat pump combination heaters shall not fall below the following values:		-
	Electric boiler space heaters and electric boiler combination heaters: The seasonal space heating energy efficiency shall not fall below 36 %.		N/A
	Cogeneration space heaters: The seasonal space heating energy efficiency shall not fall below 100 %.		N/A
	Heat pump space heaters and heat pump combination heaters, with the exception of low-temperature		Р

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
	heat pumps: The seasonal space heating energy efficiency shall not fall below 110 %.		
	Low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 125 %.		N/A
2	REQUIREMENTS FOR WATER HEATING ENERGY EFFICIENCY		-
	From 26 September 2015 the water heating energy efficiency of combination heaters shall not fall below the following values:		
(a)	Declared load profile 3XS XXS XS S M L XL XXL 3XL 4XL		N/A
	Water heating energy efficiency 22 % 23 % 26 % 26 % 30 % 30 % 30 % 32 % 32 % 32 %		
(b)	From 26 September 2017 the water heating energy efficiency of combination heaters shall not fall below the following values: Declared load profile 3XS XXS XS S M L XL XXL 3XL 4XL Water heating 32 % 32 % 32 % 32 % 36 % 37 % 38 % 60 % 64 % 64 %		N/A
	energy efficiency		Not
3	REQUIREMENTS FOR SOUND POWER LEVEL		check
	From 26 September 2015 the sound power level of heat pump space heaters and heat pump combination heaters shall not exceed the following values:		
	Rated heat output ≤ 6 kW Rated heat output > 6 kW and ≤ 12 kW and ≤ 30 kW Rated heat output > 30 kW and ≤ 70 kW		Not check
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		GIICOK
	60 dB 65 dB 65 dB 70 dB 70 dB 80 dB 88 dB		
4	REQUIREMENTS FOR EMISSIONS OF NITROGEN OXIDES		N/A
(a)	From 26 September 2018 emissions of nitrogen oxides, expressed in nitrogen dioxide, of heaters shall not exceed the following values:		N/A
	fuel boiler space heaters and fuel boiler combination heaters using gaseous fuels: 56 mg/kWh fuel input in terms of GCV;		N/A
	fuel boiler space heaters and fuel boiler combination heaters using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with external combustion using gaseous fuels: 70 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with external combustion using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with an internal combustion engine using gaseous fuels: 240 mg/kWh fuel input in terms of GCV;		N/A

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
	cogeneration space heaters equipped with an internal combustion engine using liquid fuels: 420 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with external combustion using gaseous fuels: 70 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with external combustion using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with an internal combustion engine using gaseous fuels: 240 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with an internal combustion engine using liquid fuels: 420 mg/kWh fuel input in terms of GCV.		N/A
5	REQUIREMENTS FOR PRODUCT INFORMATION		-
	From 26 September 2015 the following product information on heaters shall be provided:		-
(a)	the instruction manuals for installers and end-users, and free access websites of manufacturers, their authorised representatives and importers shall contain the following elements:		-
	for boiler space heaters, boiler combination heaters and cogeneration space heaters, the technical parameters set out in Table 1, measured and calculated in accordance with Annex III;		N/A
	for heat pump space heaters and heat pump combination heaters, the technical parameters set out in Table 2, measured and calculated in accordance with Annex III;		Р
	any specific precautions that shall be taken when the heater is assembled, installed or maintained		Р
	for type B1 boilers and type B1 combination boilers, their characteristics and the following standard text: 'This natural draught boiler is intended to be connected only to a flue shared between multiple dwellings in existing buildings that evacuates the residues of combustion to the outside of the room containing the boiler. It draws the combustion air directly from the room and incorporates a draught diverter. Due to lower efficiency, any other use of this boiler shall be avoided and would result in higher energy consumption and higher operating costs.		N/A
	for heat generators designed for heaters, and heater housings to be equipped with such heat generators, their characteristics, the requirements for assembly, to ensure compliance with the ecodesign requirements for heaters and, where appropriate, the list of combinations recommended by the manufacturer		N/A
	information relevant for disassembly, recycling and/or disposal at end-of-life;		Not check

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
(b)	the technical documentation for the purposes of conformity assessment pursuant to Article 4 shall contain the following elements	-	-
	the elements specified in point (a)		Р
	for heat pump space heaters and heat pump combination heaters where the information relating to a specific model comprising a combination of indoor and outdoor units has been obtained by calculation on the basis of design and/or extrapolation from other combinations, the details of such calculations and/or extrapolations, and of any tests undertaken to verify the accuracy of the calculations, including details of the mathematical model for calculating the performance of such combinations and details of the measurements taken to verify this model		Р
(c)	the following information shall be durably marked on the heater		-
	if applicable, 'type B1 boiler' or 'type B1 combination boiler		N/A
	for cogeneration space heaters, the electrical capacity.		N/A

Page 10 of 19 Report No.: 4394367.45

heaters								
Model(s)				MGSDC-030IIC				
Air-to-water h				Yes				
Water-to-wate		•		No				
Brine-to-water	· · · · · · · · · · · · · · · · · · ·			No				
Low-temperat				No				
Equipped with			er	No				
Heat pump co	mbination	heater		No				
	w- tempera	ature heat pu	ımps, para	erature application, e meters shall be decla e conditions				
medium-temp	oraturo	Υ		Average(mandate	and I	Υ		
Low-temperat		N		Wramer (if design		N .		
Low-temperat	uit	IN		Colder (if designation		N N		
Item	Symbol	Value	Unit	Item	Symbo		Uni	
Rated heat	Prated	7	kW	Seasonal space	ηs	133	%	
output(*)	racca	,	N. A. A.	heating energy efficiency	., 3		/6	
Declared capa indoor temper temperature T	ature 20 °C	C and outdoo	or	Declared coefficier energy ratio for pa 20 °C and outdoor	rt load at tempera	indoor temper ture T j		
Tj = - 7 °C	Pdh	6.25	kW	Tj = - 7 °C	COPd	2.58	-	
Tj = 2 °C	Pdh	3.95	kW	Tj = 2 °C	COPd	3.51	<u>3</u>	
Tj = 7 °C	Pdh	2.97	kW	Tj = 7 °C	COPd	4.89	·	
Tj = 12 °C	Pdh	2.77	kW	Tj = 12 °C	COPd	7.35	22-0	
Tj = bivalent temperature	Pdh	6.87	kW	Tj = bivalent temperature	COPd	2.13	-	
Tj = operating limit	Pdh	6.25	kW	Tj = operating limit	COPd	2.58	<u>-</u>	
For air-to- water heat pumps: T j = – 15 °C (if TOL < – 20 °C)	Pdh	N/A	kW	For air-to-water heat pumps: T j = – 15 °C (if TOL < – 20 °C)	COPd PERd	or N/A	_	
Bivalent temperature	T biv	-7	°C	For air-to-water heat pumps: Operation limit temperature	TOL	-10	°C	
Cycling interval capacity for heating	Pcych	N/A	kW	Cycling interval efficiency	or PERcy	С	%	
Degradation co-efficient	Cdh	0.9	-	Heating water operating limit	WTOL	N/A	°C	

Off mode	P _{OFF}	0.009	kW	Rated heat	Psup 0.15		kW
Thermostat- off mode	Рто	0.049	kW	output (*)			
Standb y mode	P _{SB}	0.009	kW	Type of energy input	Electric		
Crankcase heater mode	Рск	0.035	kW				
Other items							
Capacity control	•	variable		For air-to-water heat pumps: Rated air flow rate, outdoors	Fig. 1	1.2	m ³ /h
Sound power level, indoors/ outdoors	LwA	-/52	dB	For water-/brine- to-water heat pumps: Rated brine or water	•	N/A	m³/h
Emissions of nitrogen oxides	NOx	N/A	mg/kWh	flow rate, outdoor heat exchanger			
For heat pump	combinatio	n heater:					
Declared load profile	N/A			Water heating energy efficiency	η wh	N/A	%
Dail y electricit y consumption	$\Omega_{ m elec}$	N/A	kWh		Q _{fuel}	N/A	kWh
Contact details	1F,Building	C Haihe Inc		ogy Co., Ltd No.10 Dongsheng R Province ,China	oad Xinya	Street,Huad	ou

^(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

^(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

Page 12 of 19 Report No.: 4394367.45

	Energy efficiency classes	Result - Remark	Verdic	
l	SEASONAL SPACE HEATING E		-	
	The seasonal space heating ener			
	exception of low-temperature hea			
	heat pump space heaters for low-			
	determined on the basis of its sea			
	heating energy efficiency as set o			
	Table Seasonal space heating energy efficiency classes of he pumps and heat pump space heaters			
	Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η_s in %		
	A***	$\eta_s \ge 150$		Р
	A**	$125 \le \eta_s < 150$		
	A ⁺	$98 \le \eta_s < 125$		
	A	$90 \le \eta_s < 98$		
	В	$82 \le \eta_s < 90$		
	С	$75 \le \eta_s < 82$		
	D	$36 \le \eta_s < 75$		
	E	$34 \le \eta_s < 36$		
	F G	30 ≤ η _s < 34		
		$\eta_s < 30$		
	seasonal space heating energy ein Table 2.	be determined on the basis of its fficiency as set out		
	in Table 2. Seasonal space heating energy efficiency classes of le	fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters		
	in Table 2. Seasonal space heating energy efficiency classes of le	fficiency as set out		
	in Table 2. Seasonal space heating energy efficiency classes of lefter low-temp	fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters perature application		
	Seasonal space heating energy efficiency classes of lefter low-temp	fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η _s in %		Р
	in Table 2. Seasonal space heating energy efficiency classes of lefter low-temp Seasonal space heating energy efficiency class A ⁺⁺⁺	fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$		Р
	in Table 2. Seasonal space heating energy efficiency classes of lefter low-temp Seasonal space heating energy efficiency class A^+++ A^++	Find the second space heat pumps and heat pump space heaters see a pullication $Seasonal space heating energy efficiency \eta_s in % \eta_s \ge 175 150 \le \eta_s < 175$		Р
	Seasonal space heating energy efficiency classes of lefter low-temp Seasonal space heating energy efficiency class A^+++ A^+ A^+	Find the second section of the second section of the second section of the secti		Р
	in Table 2. Seasonal space heating energy efficiency classes of lefor low-temp Seasonal space heating energy efficiency class A^+++ A^+ A^+ A	Find the second section for the second section for the second section for the section for the second space heating energy efficiency η_s in %		P
	Seasonal space heating energy efficiency classes of lefor low-temp Seasonal space heating energy efficiency class A^+++ A^+ A B	Find the second space heat pumps and heat pump space heaters retained application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$		Р
	in Table 2. Seasonal space heating energy efficiency classes of lefter low-temp Seasonal space heating energy efficiency class A^+++ A^+ A^+ A B C	Find the second section for the second section for the second section for the second section for the section for the second section for the second space heating energy efficiency η_s in %		Р
	Seasonal space heating energy efficiency classes of lefter low-tempers and space heating energy efficiency class A+++ A++ A+ A B C D	Fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters returne application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$		Р
	Seasonal space heating energy efficiency classes of lefter low-tempth Seasonal space heating energy efficiency class A^+++ A^++ A^+ A B C D E	Fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters returne application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$ $59 \le \eta_s < 61$		Р
	Seasonal space heating energy efficiency classes of lefter low-tempton Seasonal space heating energy efficiency class A^+++ A^++ A^+ A B C D E F G	Fficiency as set out Table 2 ow-temperature heat pumps and heat pump space heaters returne application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$ $59 \le \eta_s < 61$ $55 \le \eta_s < 59$ $\eta_s < 55$		Р
	Seasonal space heating energy efficiency classes of lefor low-temp Seasonal space heating energy efficiency class A^+++ A^+ A B C D E F G The seasonal space heating energy efficiency class	Fisher 2 ow-temperature heat pumps and heat pump space heaters retature application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$ $59 \le \eta_s < 61$ $55 \le \eta_s < 59$ $\eta_s < 55$ Togy efficiency of a heater shall be and 4 of neaters, heat pump combination heaters		P

Clause	Energy efficiency classes The water heating energy efficiency class of a combination heater shall be determined on the basis of its water heating energy efficiency as set out in Table 3.							Result - Remark	Verdict		
									N/A		
	The water heating energy efficiency of a combination heater shall be calculated in accordance with point 5 of Annex VII.									N/A	
					Table 3						
	l —					ers, categorised by dec					
	A***	3XS η _{uh} ≥ 62	$\eta_{wh} \ge 62$	$\eta_{wh} \ge 69$	s $\eta_{wh} \ge 90$	M η _{ah} ≥ 163	L η _{sh} ≥ 188	XL $\eta_{uh} \ge 200$	XXL η _{wh} ≥ 213		
	A**	j _{uh} ≥ 0± 53 ≤ η _{ah} < 62	η _{sth} = 0.2 53 ≤ η _{sth} < 62	η _{uh} ≥ 0> 61 ≤ η _{uh} < 69	η _{uh} ≥ 70 72 ≤ η _{uh} < 90	130 ≤ η _{sh} < 163	η _{uh} ≥ 100 150 ≤ η _{uh} < 188	160 ≤ η _{ah} < 200	$170 \le \eta_{wh} \le 213$		
	A*	$44 \le \eta_{\rm wh} \le 53$	44 ≤ η _{sh} < 53	53 ≤ η _{uh} < 61	55 ≤ η _{ub} < 72	100 ≤ η _{uh} < 130	115 ≤ η _{uh} < 150	123 ≤ η _{ub} < 160	131 ≤ η _{wh} < 170		
	A	$35 \le \eta_{ah} \le 44$	35 ≤ η _{nh} < 44	38 ≤ η _{uh} < 53	38 ≤ η _{sh} < 55	65 ≤ η _{sft} < 100	75 ≤ η _{sth} < 115	$80 \le \eta_{nh} \le 123$	$85 \le \eta_{wh} < 131$		
	В С	$32 \le \eta_{ah} < 35$ $29 \le \eta_{ah} < 32$	$32 \le \eta_{wh} < 35$ $29 \le \eta_{wh} < 32$	$35 \le \eta_{uh} < 38$ $32 \le \eta_{uh} < 35$	$35 \le \eta_{ah} < 38$ $32 \le \eta_{ah} < 35$	$39 \le \eta_{uh} < 65$ $36 \le \eta_{uh} < 39$	50 ≤ η _{uh} < 75	55 ≤ η _{ati} < 80	$60 \le \eta_{wh} \le 85$ $40 \le \eta_{wh} \le 60$		N/A
	D	$29 \le \eta_{ah} < 32$ $26 \le \eta_{ah} < 29$	$29 \le \eta_{ab} < 32$ $26 \le \eta_{ab} < 29$	$32 \le \eta_{uh} < 33$ $29 \le \eta_{uh} < 32$	$32 \le \eta_{uh} < 33$ $29 \le \eta_{uh} < 32$	$36 \le \eta_{uh} < 39$ $33 \le \eta_{uh} < 36$	$37 \le \eta_{uh} < 50$ $34 \le \eta_{uh} < 37$	$38 \le \eta_{ab} < 55$ $35 \le \eta_{ab} < 38$	$36 \le \eta_{wh} < 40$		
			23 ≤ η _{sh} < 26	26 ≤ η _{uh} < 29	26 ≤ η _{uh} < 29	30 ≤ η _{uh} < 33	30 ≤ η _{uh} < 34	30 ≤ η _{uh} < 35	32 ≤ η _{uh} < 36		
	E	$22 \le \eta_{wh} \le 26$									
	F G	$19 \le \eta_{ab} < 20$ $19 \le \eta_{ab} < 22$ $\eta_{ab} < 19$	$20 \le \eta_{wh} \le 23$ $\eta_{wh} \le 20$	$23 \le \eta_{\text{wh}} < 26$ $\eta_{\text{wh}} < 23$	$23 \le \eta_{wh} < 26$ $\eta_{wh} < 23$	$27 \le \eta_{wh} < 30$ $\eta_{wh} < 27$	$27 \le \eta_{wh} < 30$ $\eta_{wh} < 27$	$27 \le \eta_{wh} < 30$ $\eta_{wh} < 27$	$28 \le \eta_{wh} \le 32$ $\eta_{wh} \le 28$		
3	ENEF	19 s η _{sth} < 22 η _{sth} < 19	$\eta_{wh} < 20$	η _{υλ} < 23	η _{uh} < 23	η _{κλ} < 27	η _{wh} < 27	$\eta_{wh} < 27$			N/A
	ENER TANK The e	RGY EF (S, IF (Fenergy education) Energy eff	FICIENCE PART OF Shall be gloss as y efficiency class	OY CLASE) A SO determ	SSES OLAR DE f a solar ined on Table	F SOLA VICE Thot wat the basis e 4. e 4	R HOT Ver storage	MATER ge tank, f) a solar de	STORAGE if (part of) a		N/A
	ENER TANK The e	RGY EF (S, IF (F energy e device, standing	FICIENCE PART OF PART OF PART OF SHALL BE GOOD ASSESSED TO THE PART OF THE PAR	OY CLASE) A SO determ	SSES O LAR DE of a solar ined on in Table Table Standin	the basis e 4. g loss S in Wat	er storages	y _{a,b} < 27 WATER ge tank, f) a solar de volume V in 1	storage if (part of) a		N/A
	ENER TANK The e	RGY EF (S, IF (F energy e device, standing	FICIENCE PART OF Shall be gloss as y efficiency class	OY CLASE) A SO determ	SSES OLAR DE f a solar ined on in Table Table Standin	the basis of 4. e 4 r storage tan g loss S in Wat S < 1.	R HOT ver storage states, with storage $5.5 + 3.16 \cdot v$	The solar de volume V in 1	STORAGE if (part of) a		
	ENER TANK The e	RGY EF (S, IF (Fenergy education) Energy eff Energy eff	FICIENCE PART OF PART OF PART OF SHALL BE GOOD ASSESSED TO THE PART OF THE PAR	OY CLASE) A SO determ	SSES OLAR DE of a solar ined on in Table Table Standin	F SOLA VICE Thot wat the basis $e + 4$. $e + 4$ $r \text{ storage tan}$ $g \text{ loss } S \text{ in Wat}$ $S < 9$ $5 + 3,16 \cdot V^{6}$ $5 + 4,25 \cdot V^{6}$	### ### #### ########################	### 4,25 · V ^{0,4} + 5,93 · V ^{0,4}	storage if (part of) a		N/A
	ENER TANK The e	RGY EF (S, IF (Fenergy educine, standing) Energy eff A	PART OF	OY CLASE) A SO determ	SSES OLAR DE of a solar ined on a standin standin 5, 8	## F SOLA VICE Thot wat the basis at 4. F of the state of the basis at 4. From the state of the basis at 4. From the basis at 4	### R HOT Notes and the storage of	### 4,25 · V ^{0,4} + 4,25 · V ^{0,4} + 5,93 · V ^{0,4} 6 + 8,33 · V ⁰	STORAGE if (part of) a vice itres		
	ENER TANK The e	RGY EF (S, IF (Fenergy education) Energy eff A	PART OF Efficiency shall be g loss as y efficiency class	OY CLASE) A SO determ	SSES OLAR DE of a solar ined on in Table Standin 5, 8 12	F SOLA VICE Thot wat the basis e + 4. e + 4 or storage tan g = 1 g = 1	er storage sts, with storage $5.5 + 3.16 \cdot 10^{-4} \le S < 12 \le S < 16.66 \cdot 10^{-4} \le S < 21$	9,0,4 < 27 WATER ge tank, ff) a solar de evolume V in 1 70.4 + 4,25 · V ^{0,4} + 5,93 · V ^{0,4} 6 + 8,33 · V ⁰ + 10,33 · V ⁴	storage if (part of) a		
	ENER TANK The e	RGY EF (S, IF (Fenergy educine, standing) Energy eff A	PART OF PART O	OY CLASE) A SO determ	sses of a solar ined on in Table Standin 5, 8 12 16,	## 4.27 PF SOLA VICE Thot wat the basis at 4. Even 4 From the strength of the strength	R HOT Ver storage states, with storage storage states, with storage sta	### 4,25 · V ^{0,4} + 4,25 · V ^{0,4} + 10,33 · V ⁰ + 13,66 · V ^{0,0}	storage if (part of) a vice itres		
	ENER TANK The e	RGY EF (S, IF (Fenergy education) Energy eff A	### ##################################	OY CLASE) A SO determ	sses of a solar ined on in Table Standin 5, 8 12 16,	F SOLA VICE Thot wat the basis e + 4. e + 4 or storage tan g = 1 g = 1	R HOT Ver storage states, with storage storage states, with storage sta	### 4,25 · V ^{0,4} + 4,25 · V ^{0,4} + 10,33 · V ⁰ + 13,66 · V ^{0,0}	storage if (part of) a vice itres		

Table for heating test data - Low temperature application (Average)

lable for neatin	g test data	a - Low temper	ature application	on (Av erage)			
Test	-	Α	В	С	D	E	F
General test conditions/part load	unit	A-7/W34 (88%)	A2/W30 (54%)	A7/W27 (35%)	A12/W24 (15%)	A-10/W35 (100%)	A-7/W34 (88%)
Barometric	KPa	101.30	101.30	101.30	101.30	101.30	101.30
Voltage	V	230.0	230.0	230.0	230.0	230.0	230.0
Current input	Α	9.461	4.278	2.411	1.492	12.240	9.461
Power input	kW	2.176	0.984	0.554	0.343	2.816	2.176
Test conditions	s indoor u	nit					
Inlet water temperature	$^{\circ}$	28.8	26.8	24.3	21.3	29.3	28.8
Outlet water temperature	${\mathbb C}$	34.0	30.1	27.0	23.7	35.0	34.0
Water flow	M^3/h	1.2	1.2	1.2	1.2	1.2	1.2
Test conditions	outdoor	unit					
Air inlet temperature, DB	\mathbb{C}	-7 .00	1.03	7 .00	12.01	-10.00	-7 .00
Air outlet temperature, WD	C	-7.79	0.99	6.02	11.01	-10.95	-7.79
Heating capacity	kW	7.290	4.585	3.723	3.313	7.940	7.290
Co-efficiency of performance	<u>a</u>	3.31	4.52	6.56	9.72	2.79	3.31
Compressor frequency	Hz	68	34	25	22	82	68

SCOP calculation (Average):

CC	OF Galcula	HOIT (MVCI	age).							
	Outdoor	Indoor	Part	Part	Measured	Measured	Measu	Cd	CR	COPPL
	air	outlet	Load	Load	heating	input Power	red			(COP bin
		water	Ratio, %		capacity		COP			(Tj)>
	°C	temper		kW		kW				(1)//
					kW					
		°C								
			00	0.007		0.470		0.00	4.00	
Α	-7	34	88	6.987	7.290	2.176	3.35	0.90	1.00	3.35
В	2	30	54	4.288	4.585	0.984	4.56	0.90	1.00	4.56
	_	- 55		0.700	7.000	0.554	7.00	2.22	0.00	4.00
С	7	27	35	2.780	3.723	0.554	6.72	0.90	0.80	6.72
D	12	24	15	1.191	3.313	0.343	9.65	0.90	0.38	9.65
_	· -		100	0.000	0.010	0.040	0.00	0.00	4.00	0.00
E	-10	35	100	8.000	7.94	2.816	2.82	0.90	1.00	2.82
F	-7	34	88	6.787	7.290	2.176	3.35	0.90	1.00	3.35
	I	I	I	1	I					

	Power W	Hours	P×H
Thermostat Off	48.7	1 7 8	8.67
Standby	9.0	0	0.00
CK	35.0	3850	134. 7 5
Off	9.0	3672	33.05

items	value	unit
Pdesignh	8.000	kW
Hhe	2066	h
Qh	16528	kWh
Qhe	3617	kWh
SCOP	4.569	•
CC	2.5	•
η	181%	-
Energy efficiency class	A+++	•

Table 2

Seasonal space heating energy efficiency class of low-temperature heat pumps and heat pump space heaters for low-temperature application

	T
Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η _s in %
A***	η _s ≥ 175
A ⁺⁺	$150 \le \eta_s < 175$
A^{+}	$123 \le \eta_s < 150$
A	115 ≤ η _s < 123
В	$107 \le \eta_s < 115$
С	$100 \le \eta_s \le 107$
D	61 ≤ η _s < 100
Е	$59 \le \eta_s < 61$
F	55 ≤ η _s < 59
G	$\eta_s < 55$

Table for heating test data - Medium temperature application (Average)

Table for heating test data - Medium temperature application (Average)							
Test	'n	Α	В	С	D	E	F
General test conditions/part load	unit	A-7/W52 (88%)	A2/W42 (54%)	A7/W36 (35%)	A12/W30 (15%)	A-10/W55 (100%)	A-7/W52 (88%)
Barometric	KPa	101.30	101.30	101.30	101.30	101.30	101.30
Voltage	V	230.0	230.0	230.0	230.0	230.0	230.0
Current input	Α	10.53	4.89	2.64	1.63	14.03	10.53
Power input	kW	2.424	1.124	0.607	0.376	3.227	2.421
Test conditions	indoor u	nit					
Inlet water temperature	\mathbb{C}	47.5	39.2	34.2	28.0	50.0	47.5
Outlet water temperature	\mathbb{C}	52.0	42.0	36.3	30.0	54.9	52.0
Water flow	M^3/h	1.2	1.2	1.2	1.2	1.2	1.2
Test conditions	outdoor	unit					
Air inlet temperature, DB	\mathbb{C}	-7 .01	2.02	6.98	12.01	-10.30	-7 .01
Air outlet temperature, WD	$^{\circ}$	-7 .99	1.00	6.00	11.01	-11.00	-7.99
Heating capacity	kW	6.247	3.946	2.968	2.766	6.873	6.247
Co-efficiency of performance	-	2.58	3.51	4.89	7.35	2.13	2.58
Compressor frequency	Hz	64	34	25	22	76	64

SCOP calculation (Average):

	CCCT Galdalation (**Volugo).									
	Outdoor	Indoor	Part	Part	Measured	Measured	Measu	Cd	CR	COPPL
	air	outlet	Load	Load	heating	input Power	red			(COP bin
		water	Ratio, %		capacity		COP			(Tj))
	°C	temper		kW		kW				` ,,,
					kW					
		°C								
Α	-		88	0.400	0.047	2.421	0.50	0.90	1.00	0.50
	-7	52		6.160	6.247		2.58			2.58
В	2	42	54	3.780	3.946	1.124	3.51	0.90	1.00	3.51
С	7	36	35	2.450	2.968	0.607	4.89	0.90	0.83	4.89
D	12	30	15	1.050	2.766	0.376	7.35	0.90	0.38	7.35
Е	10	- F - F	100	7 000	6 972	3.227	2.42	0.90	1.00	0.40
	-10	55		7.000	6.873		2.13			2.13
F	-7	52	88	6.160	6.247	2.421	2.58	0.90	1.00	2.58

	Power W	Hours	P×H
Thermostat Off	48.7	1 7 8	8.67
Standby	9.0	0	0.00
СК	35.0	3850	134.75
Off	9.0	3672	33.05

items	value	unit
Pdesignh	7.000	kW
Hhe	2066	h
Qh	14462	kWh
Qhe	4229	kWh
SCOP	3.420	•
CC	2.5	•
η	133%	•
Energy efficiency class	A++	•

Table 1

Seasonal space heating energy efficiency classes of heaters, with the exception of low-temperature heat pumps and heat pump space heaters for low-temperature application

Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η_s in %
A***	$\eta_s \ge 150$
A**	125 ≤ η _s < 150
A^{+}	98 ≤ η _s < 125
A	90 ≤ Ŋ _s < 98
В	82 ≤ η _s < 90
C	75 ≤ η _s < 82
D	36 ≤ η _s < 75
E	$34 \le \eta_s < 36$
F	$30 \le \eta_s < 34$
G	$\eta_s < 30$

End of report