

	Heat pump ERP	Test Report
Report Number	4394367.85	
Tested by (name + signature):	Elvis Chen	NAME OF THE OWNER OWNER OWNER.
Approved by (name + signature).:	Jacky Zhang	31441114111411141141141141141141141141
Date of issue		
Total number of pages	Pages	
Testing Laboratory	DEKRA Testing and Ce	rtification (Shanghai) Ltd., Guangzhou branch
	China	oad, Huangpu District, Guangzhou, Guangdong,
Applicant's name		
Address:	1F,Building C Haihe Inc Street,Huadou District,O	lustrial Zone,No.10 Dongsheng Road Xinya Guangzhou City,Guangdong Province ,China
Test specification:		
Standard		
Test procedure	(EU) No 811/2013, (EU)	No 813/2013, EU 2017/254, EU 2016/2282
Non-standard test method	N/A	
Test Report Form No	EN 14825 heat pump ai	r to water
Test Report Form(s) Originator:	DEKRA Guangzhou	
Test item description:	Heat pump	
Trade Mark	Mango *	
Manufacturer	Same as applicant	
Factory:	Same as applicant	
Model/Type reference:	MGSDC-060IIC	
Ratings:	380 V 3N~, 50 Hz, R32/	3100g, see rating label

Page 2 of 19 Report No.: 4394367.85

Summary of testing:

Tests performed (Test items):

Heating capacity

Testing location:

Foshan QiCe Testing Technical Service Co., Ltd.

1/F, of No.2 Jusheng Road, Ronggui Hongxing Residential Committee, Shunde,

Foshan, Guangdong, China

Page 3 of 19 Report No.: 4394367.85

Copy of marking plate:

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.

DC Inverter Air - Water Heat Pump

Model	MGSDC-060IIC
Power Supply	380V~50Hz/3Ph
Heating(air-10℃/water	35℃)
Heating Capacity	15.0kW
Rated Input Power	5.54kW
COP	2.71W/W
Hot water(air-10℃/wa	ter55℃)
Heating Capacity	14.0kW
Rated Input Power	6.57kW
COP	2.13W/W
Cooling(air+35°C/wate	r7°C)
Cooling Capacity	13.0kW
Rated Input Power	4.59kW
EER	2.83W/W
Max.Input Power	6.5kW
Max.Current	9.85A
Max.Pressure	4. 2Mpa
Min.Pressure	2.1Mpa
Refrigerant	R32/3100g
Water flow	≥2. 58m³/h
Water pressure drop	≦42kpa
Water pipe size	DN 25
Water Proof Class	IPX4
Noise	≦57.0dB(A)
Size(WxDxH)	1050x400x1350 (mm)
Net Weight	120.0kg

Rating label

Page 4 of 19 Report No.: 4394367.85

Page 5 of 19 Report No.: 4394367.85

Test item particulars	
Classification of installation and use:	Fixed appliance
Supply Connection:	Non-detachable power supply cord with plug

General remarks:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

Throughout this report, a dot is used as the decimal separator.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result.

The test results presented in this report relate only to the object tested.

The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

This report is not used for social proof function in China market.

General product information:	
Model number of Unit Under Test	MGSDC-060IIC
Power Supply	three-phase
Refrigerant	R32
Heat Source (Heating Mode)	air
Heat Sink	Water
Does this heat pump have a variable output	Yes
compressor?	
Type of compressor	inverter

[&]quot;(see appended table)" refers to a table appended to the report.

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
1	REQUIREMENTS FOR SEASONAL SPACE HEATING ENERGY EFFICIENCY		2
(a)	From 26 September 2015 the seasonal space heating energy efficiency and useful efficiencies of heaters shall not fall below the following values:		*
	Fuel boiler space heaters with rated heat output ≤ 70 kW and fuel boiler combination heaters with rated heat output ≤ 70 kW, with the exception of type B1 boilers with rated heat output ≤ 10 kW and type B1 combination boilers with rated heat output ≤ 30 kW: The seasonal space heating energy efficiency shall not fall below 86 %.		N/A
	Type B1 boilers with rated heat output ≤ 10 kW and type B1 combination boilers with rated heat output ≤ 30 kW: The seasonal space heating energy efficiency shall not fall below 75 %.		N/A
	Fuel boiler space heaters with rated heat output > 70 kW and ≤ 400 kW and fuel boiler combination heaters with rated heat output > 70 kW and ≤ 400 kW: The useful efficiency at 100 % of the rated heat output shall not fall below 86 %, and the useful efficiency at 30 % of the rated heat output shall not fall below 94 %.		N/A
	Electric boiler space heaters and electric boiler combination heaters: The seasonal space heating energy efficiency shall not fall below 30 %.		N/A
	Cogeneration space heaters: The seasonal space heating energy efficiency shall not fall below 86 %.		N/A
	Heat pump space heaters and heat pump combination heaters, with the exception of low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 100 %.		Р
	Low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 115 %.		N/A
(b)	From 26 September 2017 the seasonal space heating energy efficiency of electric boiler space heaters, electric boiler combination heaters, cogeneration space heaters, heat pump space heaters and heat pump combination heaters shall not fall below the following values:		÷
	Electric boiler space heaters and electric boiler combination heaters: The seasonal space heating energy efficiency shall not fall below 36 %.		N/A
	Cogeneration space heaters: The seasonal space heating energy efficiency shall not fall below 100 %.		N/A
	Heat pump space heaters and heat pump combination heaters, with the exception of low-temperature		Р

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
	heat pumps: The seasonal space heating energy efficiency shall not fall below 110 %.		
	Low-temperature heat pumps: The seasonal space heating energy efficiency shall not fall below 125 %.		N/A
2	REQUIREMENTS FOR WATER HEATING ENERGY EFFICIENCY		-
	From 26 September 2015 the water heating energy efficiency of combination heaters shall not fall below the following values:		
(a)	Declared load profile 3XS XXS XS S M L XL XXL 3XL 4XL		N/A
	Water heating energy efficiency 22 % 23 % 26 % 26 % 30 % 30 % 30 % 32 % 32 % 32 %		
/h)	From 26 September 2017 the water heating energy efficiency of combination heaters shall not fall below the following values:		N/A
(b)	Declared load profile 3XS XXS XS S M L XL XXL 3XL 4XL		INA
	Water heating energy efficiency 32 % 32 % 32 % 36 % 37 % 38 % 60 % 64 % 64 %		
3	REQUIREMENTS FOR SOUND POWER LEVEL		Not check
	From 26 September 2015 the sound power level of heat pump space heaters and heat pump combination heaters shall not exceed the following values: Rated heat output < 6 kW Rated heat output > 6 kW and Rated heat output > 12 kW and Rated heat output > 30 kW and < 70 kW		Not check
4	REQUIREMENTS FOR EMISSIONS OF NITROGEN OXIDES		N/A
(a)	From 26 September 2018 emissions of nitrogen oxides, expressed in nitrogen dioxide, of heaters shall not exceed the following values:		N/A
	fuel boiler space heaters and fuel boiler combination heaters using gaseous fuels: 56 mg/kWh fuel input in terms of GCV;		N/A
	fuel boiler space heaters and fuel boiler combination heaters using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with external combustion using gaseous fuels: 70 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with external combustion using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	cogeneration space heaters equipped with an internal combustion engine using gaseous fuels: 240 mg/kWh fuel input in terms of GCV;		N/A

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
	cogeneration space heaters equipped with an internal combustion engine using liquid fuels: 420 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with external combustion using gaseous fuels: 70 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with external combustion using liquid fuels: 120 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with an internal combustion engine using gaseous fuels: 240 mg/kWh fuel input in terms of GCV;		N/A
	heat pump space heaters and heat pump combination heaters equipped with an internal combustion engine using liquid fuels: 420 mg/kWh fuel input in terms of GCV.		N/A
5	REQUIREMENTS FOR PRODUCT INFORMATION		-
	From 26 September 2015 the following product information on heaters shall be provided:		-
(a)	the instruction manuals for installers and end-users, and free access websites of manufacturers, their authorised representatives and importers shall contain the following elements:		-
	for boiler space heaters, boiler combination heaters and cogeneration space heaters, the technical parameters set out in Table 1, measured and calculated in accordance with Annex III;		N/A
	for heat pump space heaters and heat pump combination heaters, the technical parameters set out in Table 2, measured and calculated in accordance with Annex III;		Р
	any specific precautions that shall be taken when the heater is assembled, installed or maintained		Р
	for type B1 boilers and type B1 combination boilers, their characteristics and the following standard text: 'This natural draught boiler is intended to be connected only to a flue shared between multiple dwellings in existing buildings that evacuates the residues of combustion to the outside of the room containing the boiler. It draws the combustion air directly from the room and incorporates a draught diverter. Due to lower efficiency, any other use of this boiler shall be avoided and would result in higher energy consumption and higher operating costs.		N/A
	for heat generators designed for heaters, and heater housings to be equipped with such heat generators, their characteristics, the requirements for assembly, to ensure compliance with the ecodesign requirements for heaters and, where appropriate, the list of combinations recommended by the manufacturer		N/A
	information relevant for disassembly, recycling and/or disposal at end-of-life;		Not check

Clause	(EU) No 813/2013 - Ecodesign requirements	Result - Remark	Verdict
(b)	the technical documentation for the purposes of conformity assessment pursuant to Article 4 shall contain the following elements		=
	the elements specified in point (a)		Р
	for heat pump space heaters and heat pump combination heaters where the information relating to a specific model comprising a combination of indoor and outdoor units has been obtained by calculation on the basis of design and/or extrapolation from other combinations, the details of such calculations and/or extrapolations, and of any tests undertaken to verify the accuracy of the calculations, including details of the mathematical model for calculating the performance of such combinations and details of the measurements taken to verify this model		P
(c)	the following information shall be durably marked on the heater		-
	if applicable, 'type B1 boiler' or 'type B1 combination boiler		N/A
	for cogeneration space heaters, the electrical capacity.		N/A

Table 2: Inform	nation requ	esign require		p space heaters and	heat nu	mn combinati	on
heaters	iadon requ		neat pain	p space neaters and	neat pa	mp combination	011
Model(s)				MGSDC-060IIC			
Air-to-water he	at numn			Yes			
Water-to-water		nn:		No			
Brine-to-water				No			
Low-temperati				No			
Equipped with		<u> </u>		No			
Heat pump cor		•	<i>3</i> 1	No			
			ium tama	erature application, e	voont fo	r low tompore	turo bo
	w- tempera	ature heat pu	mps, para	meters shall be decla		•	
medium-temp		Υ		Average(mandate		Y	
Low-temperati	ure	N		Wramer (if design		N	
1.	0		1,,	Colder (if designa		N	
Item	Symbol	Value	Unit	Item	Symb		Unit
Rated heat output(*)	Prated	14	kW	Seasonal space heating energy efficiency	ηs	130	%
Declared capacindoor temper temperature T	ature 20 °C			Declared coefficier energy ratio for par 20 °C and outdoor	rt load at tempera	t indoor temper	
Tj = - 7 °C	Pdh	12.89	kW	Tj = - 7 °C	COPd	2.45	=
Tj = 2 °C	Pdh	7.83	kW	Tj = 2 °C	COPd	3.50	- -
Tj = 7 °C	Pdh	5.96	kW	Tj = 7 °C	COPd		-
Tj = 12 °C	Pdh	5.27	kW	Tj = 12 °C	COPd	7.40	-
Tj = bivalent temperature	Pdh	14.01	kW	Tj = bivalent temperature	COPd	2.13	=
Tj = operating limit	Pdh	12.89	kW	Tj = operating limit	COPd	2.45	₽ = A
For air-to- water heat pumps: T j = – 15 °C (if TOL < – 20 °C)	Pdh	N/A	kW	For air-to-water heat pumps: T j = - 15 °C (if TOL < - 20 °C)	COPd PERd	or N/A	_:
Bivalent temperature	T biv	-7	°C	For air-to-water heat pumps: Operation limit temperature	TOL	-10	°C
Cycling interval capacity for heating	Pcych	N/A	kW	Cycling interval efficiency	COPcy or PERcy		%
Degradation co-efficient	Cdh	0.9	-	Heating water operating limit temperature	WTOL	. N/A	°C

Off mode	P _{OFF}	0.009	kW	Rated heat	Psup	0.16	kW
Thermostat- off mode	Рто	0.049	kW	output (*)			
Standb y mode	P _{SB}	0.009	kW	Type of energy input	Electric		-
Crankcase heater mode	Рск	0.350	kW	·			
Other items						0.50	2.0
Capacit y control		variable		For air-to-water heat pumps: Rated air flow rate, outdoors		2.58	m³/h
Sound power level, indoors/ outdoors	L _{WA}	-/57	dB	For water-/brine- to-water heat pumps: Rated brine or water	-	N/A	m³/h
Emissions of nitrogen oxides	NO _x	N/A	mg/kWh	flow rate, outdoor heat exchanger			
For heat pump	combination	heater:					
Declared load profile	N/A			Water heating energy efficiency	η _{wh}	N/A	%
Dail y electricity consumption	$\Omega_{ m elec}$	N/A	kWh		Q _{fuel}	N/A	kWh
Contact details		C Haihe Indo	ustrial Z one,	ogy Co., Ltd No.10 Dongsheng R Province ,China	oad Xinya S	Street,Huad	ou

^(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

^(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

Report No.: 4394367.85

Clause	Energy efficiency classes		Result - Remark	Verdic
1	SEASONAL SPACE HEATING E	NERGY EFFICIENCY CLASSES		3
	exception of low-temperature hea	-temperature application, shall be asonal space but in Table 1.		
	Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η _z in %		
	A***	η _s ≥ 150		Р
	A**	$125 \le \eta_s < 150$		
	A ⁺	$98 \le \eta_s < 125$		
	A	90 ≤ η _s < 98		
	B C	$82 \le \eta_s < 90$		
		$75 \le \eta_s < 82$ $36 \le \eta_s < 75$		
	E	$34 \le \eta_s < 36$		
	F	$30 \le \eta_{\delta} < 34$		
	G	η _s < 30		
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2.	be determined on the basis of its		
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of the seasonal space heating energy efficiency classes energy ener	at pump space heater for be determined on the basis of its fficiency as set out		
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of the seasonal space heating energy efficiency classes energy ener	at pump space heater for be determined on the basis of its officiency as set out Table 2 low-temperature heat pumps and heat pump space heaters		
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temp	at pump space heater for be determined on the basis of its efficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application		Þ
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency classes	at pump space heater for be determined on the basis of its officiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency \(\eta_t \) in \(\text{%} \)		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency class A+++	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η _s in % η _s ≥ 175		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency class A*** A***	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature for	at pump space heater for be determined on the basis of its efficiency as set out $Table\ 2$ Now-temperature heat pumps and heat pump space heaters perature application $Seasonal\ space\ heating\ energy\ efficiency\ \eta_s\ in\ \%$ $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_t < 115$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature seasonal space heating energy efficiency classes of for low-temperature for low-temp	at pump space heater for be determined on the basis of its officiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \geq 175$ $150 \leq \eta_s < 175$ $123 \leq \eta_s < 150$ $115 \leq \eta_t < 123$ $107 \leq \eta_s < 115$ $100 \leq \eta_s < 107$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency classes of the for low-temperature. A+++ A++ A++ A B C D	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_s < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency classes of for low-temperature. A+++ A++ A+- A B C D E	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \geq 175$ $150 \leq \eta_s < 175$ $123 \leq \eta_s < 150$ $115 \leq \eta_s < 123$ $107 \leq \eta_s < 115$ $100 \leq \eta_s < 107$ $61 \leq \eta_s < 100$ $59 \leq \eta_s < 61$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency class. A+++ A++ A + A B C D E	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \geq 175$ $150 \leq \eta_s < 175$ $123 \leq \eta_s < 150$ $115 \leq \eta_s < 123$ $107 \leq \eta_s < 115$ $100 \leq \eta_s < 107$ $61 \leq \eta_s < 100$ $59 \leq \eta_s < 61$ $55 \leq \eta_s < 59$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature. Seasonal space heating energy efficiency classes of for low-temperature. A+++ A++ A+- A B C D E	at pump space heater for be determined on the basis of its afficiency as set out Table 2 low-temperature heat pumps and heat pump space heaters perature application Seasonal space heating energy efficiency η_s in % $\eta_s \geq 175$ $150 \leq \eta_s < 175$ $123 \leq \eta_s < 150$ $115 \leq \eta_s < 123$ $107 \leq \eta_s < 115$ $100 \leq \eta_s < 107$ $61 \leq \eta_s < 100$ $59 \leq \eta_s < 61$		Р
	temperature heat pump and a he low-temperature application shall seasonal space heating energy e in Table 2. Seasonal space heating energy efficiency classes of for low-temperature application shall seasonal space heating energy efficiency classes of for low-temperature applications of the seasonal space heating energy efficiency class A+++ A++ A +++ A +++ A +++ A -+++ A	at pump space heater for be determined on the basis of its efficiency as set out $Table\ 2$ low-temperature heat pumps and heat pump space heaters perature application $Seasonal\ space\ heating\ energy\ efficiency\ \eta_s\ in\ \%$ $\eta_s \ge 175$ $150 \le \eta_s < 175$ $123 \le \eta_s < 150$ $115 \le \eta_t < 123$ $107 \le \eta_s < 115$ $100 \le \eta_s < 107$ $61 \le \eta_s < 100$ $59 \le \eta_s < 61$ $55 \le \eta_s < 59$ $\eta_s < 55$ rgy efficiency of a heater shall be ints 3 and 4 of neaters, heat pump combination heaters		P

	Ener	gy effic	iency cl	asses						Result - Remark	Verdict
	deter	mined o	eating en on the ba ency as s	isis of its	s water h	neating	a combir	nation he	eater shall be		N/A
	calcu		eating en accorda		•		bination	heater s	shall be		N/A
					Table 3						
		176			s of combination heat	ers, categorised by deci	dared load profiles, state		NVI		
	A***	3XS η ₁₄₈ ≥ 62	XXS η _{sth} ≥ 62	XS η _{sob} ≥ 69	g _{nds} ≥ 90	η _{ab} 2 163	η _{sh} ≥ 188	XL η _{mh} ≥ 200	XXL η _{n,h} ≥ 213		
	Air	53 ≤ η _{ob} < 62	53 s Nob = 62	61 s q _{sh} < 69	72 ≤ η _{ub} < 90	130 ≤ η _{sh} < 163	150 ≤ η _{ub} < 188	160 s η _{ab} < 200	170 s η _{ub} < 213		
	A	44 s η _{th} < 53	44 s q ₁₂ < 53	53 s η _{oh} < 61	55 ≤ η _{ob} = 72	100 ≤ η _{0b} < 110	115 s q _{ub} < 150	123 ≤ η _{ob} < 160	111 s q _{vb} < 170		
	A B	35 s η _{ob} < 44	35 5 η _{x3} < 44	38 ≤ η _{oh} < 53 35 ≤ η _{oh} < 38	38 s η _{ob} < 55 35 s η _{ob} < 38	65 s η _{sh} < 100	75 s η _{sth} < 115 50 s η _{sth} < 75	80 s η _{sh} < 123 55 s η _{sh} < 80	$85 \le \eta_{ab} < 131$ $60 \le \eta_{ab} < 85$		N/A
	C	$32 \le \eta_{oh} < 35$ $29 \le \eta_{oh} < 32$	32 ≤ η _{sh} < 35	35 ≤ η _{sh} < 38 32 ≤ η _{sh} < 35	35 ≤ η _{wh} < 38 12 ≤ η _{wh} < 35	39 s η _{ab} < 65	17 ≤ η _{ub} < 75	35 ≤ η _{ob} < 80	60 ≤ η _{ub} < 85		IN/A
	D	26 s η _{wh} < 29	26 s η _{sk} = 29	29 s q _{ob} < 32	29 s η _{ob} < 32	33 ≤ η _{s/a} < 36	34 s η _{ob} < 37	35 ≤ η _{0.h} < 38	36 ≤ η _{vh} < 40		
	E	22 s η _{oh} < 26	23 s n _{cb} < 26	26 s η _{vis} < 29	26 s η _{ab} < 29	30 s η _{nh} < 33	30 s η _{wb} < 34	30 s η _{ub} < 35	32 ≤ η _{nh} < 36		
	F G	19 < η _{oh} < 22 η _{oh} < 19	$20 \le \eta_{wh} < 23$ $\eta_{wh} < 20$	23 ≤ η _{ob} < 26 η _{ob} < 23	$23 \le \eta_{wh} < 26$ $\eta_{wh} < 23$	27 ≤ η _{ob} < 3Ω	27 ≤ η _{ob} < 30	27 ≤ η _{ab} < 30	28 ≤ q _{vb} < 32		
•	ENEI	RGY EF	FICIEN	CY CLA	SSES O	F SOLA	IR HOT	WATER	STORAGE		N 1/0
3	1		FICIENC PART OF			F SOLA			:		N/A
3	TANA The e	KS, IF (Fenergy education device, standing	PART OF	class of determ	f a solar ined on in Table Table	F SOLA VICE hot wat the basis e 4.	R HOT	WATER ge tank,	STORAGE if (part of) a		N/A
3	TANA The e	energy e device, standing	PART OF	class of determ	f a solar ined on in Table Table	F SOLA VICE Thot wat the basis e 4. 2.4 If storage tan	R HOT	WATER ge tank, of a solar de	STORAGE if (part of) a		N/A
3	TANA The e	KS, IF (Fenergy endewice, standing	PART OF	class of determ	I a solar ined on in Table Table lar hot wate	F SOLA VICE Thot wat the basis e 4. e 4 r storage tan g loss S in Wat	er storage	WATER ge tank, of a solar de	STORAGE if (part of) a		N/A
3	TANA The e	KS, IF (Fenergy endewice, standing	PART OF efficiency shall be g loss as by efficiency class	class of determ	f a solar ined on in Table Table Standin	F SOLA VICE hot wat the basis 4. 4 r storage tan g loss \$ in Wat \$ < 5 5 + 3,16 \cdot V^0	er storages	WATER ge tank, of) a solar de volume V in 1 /0.4 + 4,25 · V ^{0.4}	STORAGE if (part of) a		N/A
3	TANA The e	KS, IF (Fenergy endewice, standing	PART OF efficiency shall be g loss as gy efficiency class	class of determ	LAR DE of a solar ined on in Table Table Standin 5,	F SOLA VICE Thot wat the basis e 4. e 4 r storage tan g loss S in Wat S < 9 5 + 3,16 · V ⁶ 5 + 4,25 · V ⁴	ter storage states, with storage $5.5 + 3.16 \times 10^{-0.4} \le S < 8.5$	WATER ge tank, of a solar de volume V in 1 70.4 + 4,25 · V ^{0.4} + 5,93 · V ^{0.4}	STORAGE if (part of) a		
3	TANA The e	KS, IF (Fenergy endewice, standing	efficiency shall be g loss as by efficiency class A+ A	class of determ	LAR DE of a solar ined on in Table Table Standin 5, 8.	F SOLA VICE Thot wat the basis 0.4 . 0.4 The storage tan 0.5 0.4 From 0.4	The storage of the s	WATER ge tank, ff) a solar de volume V in 1 /0.4 + 4,25 · V ^{0.4} + 5,93 · V ^{0.4} 6 + 8,33 · V ⁰	STORAGE if (part of) a		
3	TANA The e	energy endevice, standing	PART OF efficiency shall be g loss as gy efficiency class A+ A	class of determ	LAR DE of a solar ined on in Table Table Standin 5, 8, 12	F SOLA VICE Thot wat the basis e 4. 2 4 1 storage tan $S < \frac{1}{2}$ $5 + 3.16 \cdot V^{0}$ $5 + 4.25 \cdot V^{0}$ $+ 5.93 \cdot V^{0.4}$ $66 + 8.33 \cdot V^{0.4}$	The storage of the s	WATER ge tank, of a solar de volume V in 1 vo.4 + 4,25 · V ^{0.4} + 5,93 · V ^{0.4} 6 + 8,33 · V ⁰ + 10,33 · V ⁴	STORAGE if (part of) a		
3	TANA The e	energy endevice, standing	efficiency shall be g loss as a sty efficiency class	class of determ	I a solar ined on a standing trable standing sta	F SOLA VICE Thot wat the basis a 4. 2 4 Tristorage tan g loss 5 in Wat 5 < 3 5 + 3,16 · V ⁰ + 5,93 · V ^{0,4} + 66 + 8,33 · V + 10,33 · V ⁰	The storage of the s	WATER ge tank, fi) a solar de volume V in 1 /0.4 + 4,25 · V ^{0.4} + 5,93 · V ^{0.4} + 10.33 · V ⁰ + 13,66 · V ^{0.4}	STORAGE if (part of) a		

Table for heating test data - Low temperature application (Average)

Table for heating test data - Low temperature application (Average)							
Test		Α	В	С	D	Е	F
General test conditions/pa rt load	unit	A-7/W34 (88%)	A2/W30 (54%)	A7/W27 (35%)	A12/W24 (15%)	A-10/W35 (100%)	A-7/W34 (88%)
Barometric	KPa	101.30	101.30	101.30	101.30	101.30	101.30
Voltage	V	400.0	400.0	400.0	400.0	400.0	400.0
Current input	Α	5.74	2.31	1.66	1.03	6.59	5.74
Power input	kW	3.980	1.603	1.149	0.716	4.567	3.980
Test conditions	s indoor u	nit					
Inlet water temperature	$^{\circ}$	29.6	27.6	24.6	21.6	30.9	29.6
Outlet water temperature	${\mathbb C}$	34.0	30.0	27.0	23.9	35.0	34.0
Water flow	M^3/h	2.58	2.58	2.58	2.58	2.58	2.58
Test conditions	outdoor	unit					
Air inlet temperature, DB	\mathbb{C}	-7.00	1.01	7.00	12.00	-10.00	-7.00
Air outlet temperature, WD	\mathbb{C}	-7.98	0.98	6.05	10.59	-11.10	-7.98
Heating capacity	kW	13.251	7.037	7.332	6.887	12.377	13.251
Co-efficiency of performance	-	3.32	4.55	6.68	9.31	2.81	3.32
Compressor frequency	Hz	72	36	25	22	84	72

SCOP calculation (Average):

30	OF Calculat				1					
	Outdoor	Indoor	Part	Part	Measured	Measured	Measu	Cd	CR	COPPL
	air	outlet	Load	Load	heating	input Power	red			(COP bin
		water	Ratio, %		capacity		COP			(Tj))
	°C	temper		kW		kW				(.,,,,
					kW					
		°C								
^			00	40.045		2.000		0.00	4.00	
Α	-7	34	88	13.215	13.215	3.980	3.32	0.90	1.00	3.32
В	2	30	54	8.044	7.037	1.603	4.39	0.90	1.14	4.39
С			35	5.171		1.149		0.90	0.71	
	7	27	ან	5.171	7.332	1.149	6.38	0.90	0.71	6.38
D	12	24	15	2.298	6.887	0.716	9.62	0.90	0.33	9.62
E			100	14.939		4.567		0.90	1.21	
	-10	35	100	14.939	12.377	4.301	2.71	0.90	1.21	2.71
F	-7	34	88	13.215	13.215	3.980	3.32	0.90	0.96	3.32

	Power W	Hours	P×H
Thermostat Off	48.7	1 7 8	8.67
Standby	9.0	0	0.00
СК	35	3850	134.75
Off	9.0	3672	33.05

items	value	unit
Pdesignh	14.939	kW
Hhe	2066	h
Qh	30863	kWh
Qhe	7041	kWh
SCOP	4.610	•
CC	2.5	-
η	179%	-
Energy efficiency class	A+++	•

Table 2

Seasonal space heating energy efficiency class of low-temperature heat pumps and heat pump space heaters for low-temperature application

Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η_s in %
A***	ης ≥ 175
A ⁺⁺	$150 \le \eta_s < 175$
A^{+}	$123 \le \eta_s < 150$
A	$115 \le \eta_s < 123$
В	$107 \le \eta_s < 115$
С	$100 \le \eta_s \le 107$
D	61 ≤ η _s < 100
E	59 ≤ η ₅ < 61
F	55 ≤ η _s < 59
G	$\eta_s < 55$

Table for heating test data - Medium temperature application (Average)

lable for heating test data - Medium temperature application (Average)							
Test	-	Α	В	С	D	E	F
General test conditions/part load	unit	A-7/W52 (88%)	A2/W42 (54%)	A7/W36 (35%)	A12/W30 (15%)	A-10/W55 (100%)	A-7/W52 (88%)
Barometric	KPa	101.30	101.30	101.30	101.30	101.30	101.30
Voltage	V	400.0	400.0	400.0	400.0	400.0	400.0
Current input	Α	7.59	3.25	1.76	1.03	9.50	7.59
Power input	kW	5.262	2.254	1.218	0.713	6.580	5.262
Test conditions	s indoor u	nit					
Inlet water temperature	\mathbb{C}	46.6	38.9	34.0	27.7	49.0	46.6
Outlet water temperature	C	52.0	42.0	36.3	29.8	55.0	52.0
Water flow	M^3/h	2.58	2.58	2.58	2.58	2.58	2.58
Test conditions	soutdoor	unit	1				
Air inlet temperature, DB	\mathbb{C}	-7 .00	2.07	6.99	12.01	-10.10	-7 .00
Air outlet temperature, WD	\mathbb{C}	-7 .99	0.98	6.01	10.8 7	-11.02	-7.99
Heating capacity	kW	12.893	7 .819	5.958	5.273	14.010	12.893
Co-efficiency of performance	2	2.45	3.50	4.89	7.40	2.13	2.45
Compressor frequency	Hz	72	36	25	22	84	72

SCOP calculation (Average):

00	OF Calcula	HOIT (MVCI	ago).							
	Outdoor	Indoor	Part	Part	Measured	Measured	Measu	Cd	CR	COPPL
	air	outlet	Load	Load	heating	input Power	red			(COP bin
		water	Ratio, %		capacity		COP			(Tj))
	°C	temper		kW		kW				. ,,,
					kW					
		°C								
Α	_		88			5.262		0.90	1.00	
	-7	52	00	12.329	12.893	3.202	2.45	0.90		2.45
В	2	42	54	7.565	7 .819	2.254	3.50	0.90	0.97	3.50
С	7	36	35	4.904	5.985	1.218	4.89	0.90	0.82	4.89
D	. <u> </u>		15			0.713		0.90	0.40	
U	12	30	15	2.102	5.273	0.713	7.40	0.90	0.40	7.40
Е	-10	55	100	14.000	14.010	6.580	2.13	0.90	1.00	2.13
F	-7	52	88	12.329	12.893	5.262	2.45	0.90	1.00	2.45

	Power W	Hours	P×H
Thermostat Off	48.7	1 7 8	8.67
Standby	9.0	0	0.00
CK	35.0	3850	134. 7 5
Off	9.0	3672	33.05

items	value	unit
Pdesignh	14.010	kW
Hhe	2066	h
Qh	28945	kWh
Qhe	8645	kWh
SCOP	3.348	•
CC	2.5	•
η	130%	•
Energy efficiency class	A++	•

Table 1

Seasonal space heating energy efficiency classes of heaters, with the exception of low-temperature heat pumps and heat pump space heaters for low-temperature application

Seasonal space heating energy efficiency class	Seasonal space heating energy efficiency η_s in %
A***	$\eta_s \ge 150$
A**	$125 \le \eta_s < 150$
A^{+}	98 ≤ η _s < 125
A	$90 \le \eta_s < 98$
В	82 ≤ η _s < 90
С	$75 \le \eta_s < 82$
D	$36 \le \eta_s < 75$
E	$34 \le \eta_s < 36$
F	$30 \le \eta_s < 34$
G	$\eta_{s} < 30$

End of report